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Comparisons of Theoretical Limits for Source Coding
With Practical Compression Algorithms
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In this article, the performance achieved by some specific data compression al-

gorithms is compared with absolute limits prescribed by rate distortion theory for
Gaussian sources under the mean square error distortion criterion. These results

show the gains available from source coding and can be used as a reference for the
evaluation of future compression schemes. Some current schemes perform well, but

there is still room for improvement.
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I. Introduction

The theoretical limits on the performance of source and

channel coding are well known for several source and chan-

nel models [1,2,5]. In this article, the authors calculate
the theoretical limits for one- and two-dimensional Gauss-

Markov sources used as models for planetary images. The

formulas underlying these calculations are well known; the
aims in this article are first to collect and graphically dis-

play these results, and then to compare them with the
performance of specific data compression algorithms.

These results show the gains available from source cod-

ing and can be used as a reference for the evaluation of
present and future compression schemes. These results

also suggest that large improvements in information trans-
mission in future missions can be achieved by advanced

source coding.

I!. Theoretical Rate Distortion Limits

The authors consider time-discrete continuous-

amplitude sources that produce identically distributed

output samples x governed by a probability distributior/

P(x) with density p(x). Each source sample x is recon-
structed after source coding and decoding into a recon-

structed sample y. The accuracy of reproduction is mea-

sured by a nonnegative function d(x, y) = (x- y)2 called a

squared error distortion measure. The average distortion
D on a sequence of g samples is (l/N) E/N=oI(xi -- yi) 2

and is called mean square error (MSE) distortion.

A. One.Dimensional Gausslan Sources

For a Gaussian memoryless source, p(x) is the Gaussian

probability density with variance cry, and the rate distor-
tion function for MSE distortion is [1]

R(D)=_log 2_-, 0<D<ar (1)

where the rate R is measured in bits/sample.

A time-discrete stationary Gaussian source with spec-

tral density function
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where ¢(n) is the autocorrelation function, has a rate dis-

tortion R(D) given in the parametric form [1]

[
mini0, ¢(w)]d_ (3)

and

R(0) = 2"-_/-_r max 0, _ log 2 dw (4)

where 0 is the parameter.

Consider the special case of a first-order Gauss-Markov

source of variance ¢_ with samples

zi =px__lq-wi _ (5)

where {wi} is an independent, identically distributed

(i.i.d.) zero-mean Gaussian sequence with variance a_ =

cr_(1 - p2). This source will be called the one-dimensional
causal model, or 1DC model, and is characterized by an

exponentially decaying memory given by the autocorrela-
tion function

02 _in¢(n)= =pl , O<p< 1 (6)

which gives

a_(1 - p2) (7)
@(w) = 1 - 2pcosw +p2

Incidentally, tile power spectral density function is always

easy to find, given the definition of the model that gener-

ates the samples {xi}, as described in [3].

B. Two-Dimensional Gausslan Sources

The rate distortion function R(D)

dimensional Gaussian source is given by [7]

for a two-

fD(O) = ( ! )_ ['_ min[O, ¢(Wl,W,,)]dwldw2
27r J_. ,

(s)

and

r ,, 1 @(w_ w2),]

(9)

A two-dimensional Gauss-Markov (autoregressive) causal

source is defined by

Zi,j -" PlXi-l,j q'-p2xi,j-1 "1- pl,2Zi-lj-1 "4- wl,j (10)

where {w/,j} is a two-dimensional i.i.d, zero-mean Gaus-
2

sian sequence with variance a_0. If Pl,2 = -PIP2 is chosen,
the source model in Eq. (10) becomes separable and will

be called the two-dimensional causal (2DC) model. Then

the variances of the sequences {wid } and {zi,j } are related

by = - p[)(1- and

a_(l - pi2)(l- p_)

(1)(wl,w2)= (I- 2pI costal+ p_)(l - 2p2 cosw2 + p_)

ill)

This causal separable model has an autocorrelation func-

tion ¢(nx, nz) given by

¢(nl,n2) =_lpxl"'lp21"' (12)

which displays an undesirable nonisotropic behavior, as
discussed later in this section.

Figure i shows the rate distortion functions for the IDC

model and the 2DC model with Pl = P2 = P for several
values of p. The values of the correlation coefficient p
have been chosen to illustrate the effect of correlation on

the rate necessary to represent the source. At low distor-
tion, these values give rate distortion curves spaced by art

integer number of bits from the curve for the memoryless

source. Each successive correlation value in Fig. 1 repre-

sents (asymptotically for low distortion) one extra bit of
information that can be extracted from each sample's cor-

relation with its neighbors, and thus need not be spent to

represent the source.

A more realistic model for images, the two-dimensional

noncausal (2DNC) model, is given by

zi,j = a(zij_l + zid+l + zi-i,j + zi+l,j) + wij,

bl < 1/4 (13)
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This is a noncausal model with a power spectral density

O(wl,w2) = [1 -'2cr(coswl + cosw_.)] _ (14)

2 andwhere erw - a_0,

7r _ 1

r/-I (_)'/_./_. [l_2a(coswl_t_cosw2)]2"d_vldW2

=: (15)

{T1, ..., TM-1}, the output is y = Lk if and only if

Tk-1 < x < T_, k = 1, ..., M, where To = -co and
TM = +co. The input-output characteristic of a four-

level quantizer is shown in Fig. 5.

Let {zl, ..., ZN} be a sequence of random samples

generated by a source and let {yl, "", YN} be the corre-

sponding quantized samples produced by an M-level quan-

tizer. Then the quantized sequence has rate B = log s M
bits and MSE distortion

The autocorrelation of this model was computed numeri- : :7M eTk

cally, and it was found to behave almost isotropically at _ ] (z - L_)2p(x)dx
_mall displacements. Figure 2 shows a comparison of the _ JTk_,
aUtocorrelatmns for the causal and noncausal models for

- correlation coefficients p that are representative of typical

planetary images. The function

(16)

is an example of exactly isotropic autocorrelation [4], but

the authorsdo not presently know a model that realizes
such an autocorrelation.

The qualitative behavior of the autocorrelation func-
tions for the 2DC and 2DNC models is illustrated in the

contour plots of Fig. 3. Note that for small values of nl

and n_ the contours for the 2DNC model are nearly circu-
lar, indicating that this model is nearly isotropic for small

displacements..

The rate distortion functions for the 2DC and 2DNC

modeIs are'shown in Fig. 4 with the same parameter values
used in Fig. 2. Since the autocorrelation function for the

2DNC model decays more rapidly than for the 2DC model

when both models have the same value of ¢(1,0) fixed, the
rate distortion function of the 2DNC model lies above that

of the 2DC model.

DA 1 N
= - = -

(17)

where p(z) is the probability density of the source. There-
fore, the M-level quaaatizer realizes the point (B,D) on

the rate disto_tl-on plane. The optimum quantizer, which

achieves the lowest possible MSE for given source statis-

tics, has been determined in terms of the reproduction

levels {Lk} and the thresholds {Tk} using an optimization
technique developed by Lloyd and Max in 1960. If the

quantizer is restricted to have equally spaced thresholds,

i.e.,a uniform quantizer with constant step size Tk -Te-1

is considered, a slightly higher distortion for correspond-

ing rates is obtained, as shown in Fig. 6 for the Gaussian
memoryless source. An optimum uniform quantizer is a

uniform quantizer that minimizes the MSE distortion.

Improved rate performance can be obtained by using

entropy coding after _[uantization, since the probability

Pk = Pr(y = Lk) = fT':_, p(x)dz that a quantizer output

will be Lk is not a constant (except for degenerate cases),
and therefore the entropy of the quantized samples y is
strictly less than B

N

H(y) = - _ P_ log 2 PI, < B (18)
k=l

III. Quantization

Given a time-discrete continuous amplitude source, the

simplest form of data compression is scalar (sample-by-
sample) quantization. An M-level quantizer is a device

with an input that can assume any real value z and an

output y that can assume only M values {LI, ..., LM}.

Usually, the number of levels is a power of 2, so that a B-bit
quantizer has 2n levels. Given the quantization thresholds

The entropy coded performance of the two quantizers con-
sidered above is also shown in Fig. 6, where it is apparent

that the advantage of the Lloyd-Max quantizer over the

uniform quantizer disappears after entropy coding. Re-
sults on entropy coded quantizers were obtained from the

literature [3] and reproduced by computer _imulation.

Instead of quantizing individual source samples, one

could collect a whole vector x = (xz, .--, xn) and then
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vectorquantization.The performance of vectorquantiza-

tionmethods willbe discussedin a futurearticle.

Ifone replacesthe memoryless Gaussian source with
a one-dimensional Gauss-Markov source with correlation

coefficientp between successivesamples (1DC model), a

simple method to exploitthe source memory isto take

differences between successive quantized samples and then

apply entropy coding. The performance of such a one-step

predictor on samples produced by an optimum uniform

quantizer is shown in Fig. 7.

In practice,the continuous amplitude sourceisinitially

quantized to B bits,typically8 bits.In the followingdis-

cussionof practicalcompression algorithmsfor images, it

isassumed that the source has been quantized to 8 bits

per sample by an optimum uniform quantizer.

The proposed Joint Photographic Expert Group
(JPEG) image compression standard [6] uses, in its base-

line version, discrete cosine transform (DCT) processing,

quantization, and Huff'man coding. The performance of
this compression scheme on the 2DC model has been evalu-

ated and compared with the rate distortion limits in Fig. 8.

The performance of the entropy coded one-step predictor

on the 2DC model is also shown in Fig. 8 for compari-

son. For most science purposes, a typical planetary image
is considered acceptable at normalized distortions D/o'_

up to approximately 10 -2, corresponding to about 5 gray

levels of rms error out of 256 levels for typical images. In

this range of interest, the JPEG scheme is superior to the

entropy coded predictor, but the theoretical limit leaves

ample space for improvements. The performances of the

JPEG scheme and the entropy coded one-step predictor

on the 2DNC model are compared in Fig. 9.

IV. Comparisons of Practical Compression
Algorithms and Theoretical Limits

The performance of specific compression algorithms de-

signed for 8-bit input data can be measured experimentally
by generating in software a Gauss-Markov random field ac-

cording to one of the models described in Section II and by

quantizing the resulting samples to 8 bits with an optimum

uniform quantizer.

The entropy coded one-step predictor described in the

previous section is a simple example of a practical com-

pression scheme, and it is essentially the image compres-

sion scheme used in Voyager, where the source was initially
quantized to 8 bits by the camera. The point denoted by 8

in the rate distortion plot of Fig. 7 represents the so-called

lossless performance of such a scheme. This scheme per-

forms reasonably well at low distortions (as compared with

the rate distortion function) when it is applied to the one-
dimensional source 1DC. One will see that its performance

is no longer attractive when applied to two-dimensional
sources 2DC or 2DNC.

V. Conclusion

The theoretical limits computed in this article and the

experimental results on source models verify the gains
available by source coding, and can be used as a refer-

ence for the evaluation of present and future compression

schemes. These results also suggest that large improve-
ments in information transmission in future missions can

be achieved by advanced source coding.

Mathematical source models studied in this article in-

clude both relatively simple one- and two-dimensional
causal Gauss-Markov models and a two-dimensional non-

causal model whose nearly isotropic correlation function

more closely resembles that of real images. :-

More work is necessary in relating the mathematical

models to actual image sources, in evaluating the pe r-

formance of other practical compression schemes, and
in understanding the actual quant_zation performed in
the camera.
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Fig. 1. Rate distortion functions for 1DC and 2DC models.
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Fig. 2. Two-dimensional normalized autocorrelatlon functions

_(n 1, n2)/O'2x: (a) 2DC model and (b) 2DNC model.

(a) 2DC MODEL, p = 0.9 (b) 2DNC MODEL, a = 0.245
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Fig. 3. Contour plotl: (a) causal and (b) noncausal autocorrelatlons.
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Fig. 7. Performance of entropy coded one-step pradlotor on

Gauu-Markov source with p = 0,98,
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Fig. 8. Comparisons of practical compression algorithms and

theoreticai limits (2DC modal).
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